
Ilk.

Gt

M

DDISTRIBUTION STATEMENT A DEC 16 4fLLJ Approved for public releal
_j- Distribution Unlimited

YALE UNIVERSITY A

a:= c DEPARTMENT OF COMPUTER SCIENCEv

¢7 - --

Yale Sparse Mati iPackage

1The Symeretric Codes*(S , sc./Eisenstat,+1,. C. Gursky.

M. H./SchultzV A. H./Sherman

Research Report #112

Appr ,.d fL; p.bhc ielea3
Distribition Unlimited

1This research was supported in part by ONR Grant N00014-0277,
NSF Grant MCS 76-11460, AFOSR Grant F49620-77-C-0037, and the Chevron Oil
Field Research Company.

2Department of Computer Science, Yale University.

3Department of Electrical Engineering and Computer Science, University
of California, Berkeley.

4Department of Computer Sciences, The University of Texas at Austin.

J4

1. Introduction

Consider the NxN system of linear equations

(14) M x -b.

where the coefficient matrix M is large, sparse, symmetric, and positive

definite. Such systems arise frequently in scientific computation,

eg., in finite difference and finite element approximations to elliptic

boundary value problems. ."this report..w. presentL a package of

efficient, reliahle, well-documented, and portable FORTRAN subroutines

for solving these systems.

Direct methods for solving (1) are generally variations of

symmetric Gaussian elimination. We form the U tDU decomposition of A,

where U is unit upper triangular and D positive diagonal, and then

successively solve the triangular systems

(2) U t y -b, D z -y, U x -Z.

When M is large (N >> 1), (dense) Gaussian elimination is prohibitively

expensive in terms of both the work C 1/3 N 3 multiplies) and storage

(N 2words) required. But, since M is sparse, most entries of M and U

are zero and there are significant advantages to factoring M without

storing or operating on the zeroes appearing in M and U. Recently, a

number of implementations of sparse Gaussian elimination have appeared

based on this idea, cf. (2,5,6,71.

In section 2, we describe the scheme used for storing sparse

matrices, while in Section 3 we give an overview of the package from the

point of view of the user; for further details of the algorithms

employed, see [4,9]. In section 4, we illustrate the performance of the

-2-

package on a typical model problem. Listings of the ordering

subroutines and the subroutines for factoring and solving spars"

symmetric positive definite systems appear as Appendices I and 2.

Appendix 3 contains a test driver, a sample output of which appears as

Appendix 4.

-3-

2. A Sparse Matrix Storage Scheme

Since the coefficient matrix H and the upper triangular factor U

are large and sparse, it is inefficient to store them as dense matrices.

Instead, we store matrices using a row-by-row storage scheme used in

previous implementations of sparse symmetric Gaussian elimination,

cf. (1,4].

This scheme requires three one-dimensional arrays: IA, JA, and A.

The nonzero entries of M are stored row-by-row in the REAL array A. To

identify the individual nonzero entries in a row, we need to know in

which column each entry lies. The INTEGER array JA contains the column

indices which correspond to the nonzero entries of M, i.e., if A(K) =

M(I,J), then JA(K) = J. In addition, we need to know where each row

starts and how long it is. The INTEGER array IA contains the indices in

JA and A where each row of M begins, i.e., if M(I,J) is the first

(leftmost) entry of the Ith row and AK) - M(I,J), then IA(I) = K.

Moreover, IA(N+l) is defined as the index in JA and A of the first

location following the last element in the last row. Thus, the number

of entries in the Ith row is given by IA(I+1) - IA(I), and the

nonzero entries of the Ith row are stored consecutively in

A(IA(l)), A(IA(I)+I), ..., A(IA(1+I)-I)

and the corresponding column indices are stored consecutively in

JA(IA(l)), JA(IA(I)+1), ... , JA(IA(I+1)-l).

0

lst. AVAIL ad, WECIAL

:o4

For example, the 5x5 matrix

1 02 30'

is stored as

1 2 3 4 5 6 7 8 9 10 11 12 13

IA 1 4 5 8 12 13

JA 1 3 4 2 1 3 4 1 3 4 5 4 5

A 1 2 3 4 2 5 6 3 6 7 R~ 89.

Since the matrix M is symmetric, it suffices to store only the

nonzero entries in the diagonal and strict upper triangle of M. The

storage scheme used Is the same as before (except that nonzero entries

in the strict lower triangle of M are ignored), and our example matrix

would be stored as

1 2 3 4 5 6 7 8 9

IA 1 4 5 7 9 10

JA 1 3 4 2 3 4 4 5 5

A 1 2 3 4 5 6 7 8 9

The overhead in this storage scheme is the storage required for the

INTEGER arrays IA and JA. But since IA has N+1 entries and JA has one

entry for each element of A, the total overhead is approximately equal

-5-

to the number of nonzero entries in (the diagonal and strict upper

triangle of) M.

-6-

3. A Sparse Symetric Matrix PackaLe

The package consists of three drivers and five subroutines (see

Figure 1). The ordering driver (subroutine ODRV) may be used to

symmetrically reorder the variables and equations so as to reduce the

total work (i.e. the number of multiplies) and storage required. The

solution driver (subroutine SDRV) is used to solve the (permuted) system

of linear equations. The test driver (program STST) sets up a model

sparse symmetric positive definite system of linear equations, calls

ODRV to reorder the variables and equations, and calls SDRV to solve the

linear system. In the remainder of this section, we describe each of

these routines in somewhat greater detail. The codes themselves are

extensively documented; for further details about the algorithms

employed, see [4,9].

Figure 1: A schematic overview of the sparse symmetric matrix package

ODRV SR

ORDERSR S NSS

-7-

A. The Ordering Driver .ODRV)

The work and storage required to solve a large sparse system of

linear equations clearly depend upon the zero-nonzero structure of the

coefficient matrix. But since this matrix is symmetric and positive

definite, we could equally well solve the permuted system

(3) Q M Qt y - Q b, Q x - y

given any permutation matrix Q. The permuted system corresponds to

symmetrically reordering the variables and equations of the original

system, and the net result can often be a significant reduction in the

work and storage required to form the Ut DU decomposition of A (31.

The ordering driver (subroutine ODRV) uses the important heuristic,

the minimum degree algorithm (implemented in subroutine ORDER), to

select Q. ORDER does a symbolic elimination on the nonzero structure of

the system. At each step, it chooses a pivot element from among those

uneliminated diagonal matrix entries which require the fewest arithmetic

operations to eliminate (ties are broken arbitrarily). This has the

effect of locally optimizing the elimination process with respect to the

number of arithmetic operations performed. See [8,9) for more details.

ORDER returns two one-dimensional INTEGER arrays of length N: P

contains the permutation of the row and column indices of M, i.e., the

sequence of pivots; and IP contains the inverse permutation, i.e.,

IP(P(I)) = I for I - 1,2,...,N. If only the upper triangle of M is

being stored, then the representation of M (i.e., the arrays IA, JA, and

A) must be rearranged using the subroutine SRO (PATH=2 in ODRV).

The user may bypass ODRV entirely by setting P(1) - IP(I) - I

for I - 1,2,3,...,N. Alternately, the user may substitute another

ordering subroutine for ORDER, as long as it produces the two

permutations P and IP. But again, if only the upper triangle of . is

being stored, the representation of M must be rearranged using SRO.

B. The Solution Driver (SDRV)

The solution driver (subroutine SDRV) is used to solve the

(permuted) linear system. Following Chang [I], SDRV breaks the solution

process into three steps: symbolic factorization (subroutine SSF),

numerical factorization (subroutine SNF), and back-solution (subroutine

SNS). First, SSF determines the nonzero structure of the rows of U from

the nonzero structure of the rows of M. Second, SNF uses the structure

information generated by SSF to compute the UtDU factorization of M.

Third, SNS computes the solution x from the factorization generated by

SNF and the right-hand side b.

By splitting up the computation, we have gained flexibility. To

solve a single system of equations, it suffices to use SSF, SNF, and SNS

(PATH-i in SDRV). To solve several systems in which the coefficient

matrices have the same nonzero structure, it suffices to use SSF only

once and then to use SNF and SNS for each system (PATH-2). To solve

several systems with the same coefficient matrix but different right

hand sides, it suffices to use SSF and SNF only once and then use SNS

for each system (PATH=3).

-9-

C. The Test Driver (STST)

The test driver (program STST) is used to verify the performance of

the package on a particular computer system, and may be used as a guide

to understanding how to use the package. It generates the coefficient

matrix for the standard five-point finite difference approximation on a

3x3 grid to the Poisson equation and chooses the right-hand side so that

the solution vector x is (1,2,3,4,5,6,7,8,9). Since H is symmetric, we

can specify either the entire matrix (CASE-I) or only the upper triangle

(CASE-2). STST then calls ODRV to reorder the variables and equations.

and SDRV to solve the linear system. At each stage, the values of all

relevant variables are printed out. A sample output appears as Appendix

4.

-10-

4. Performance

One of the most important aspects of any package is its performance

in terms of both the time and storage required to solve a typical

problem. In Tables I and II, we present the time and storage required

to solve the familiar five-point finite difference equations on an n x n

grid for several values of n. These computations were performed in

single precision on an IBM 370/158 using the FORTRAN X optimizing

compiler.

Table I

Time Required

Five-Point Operator on an n x n Grid

Grid STST ORDER SRO SSF SNF sec/* SNS Total

20 0.083 0.657 0.043 0.100 0.407 14.016 0.087 0.593

30 0.190 1.750 0.100 0.257 1.430 13.002 0.230 1.917

40 0.340 3.656 0.177 0.503 3.700 12.449 0.470 4.673

Table II

Storage Required

Five-Point Operator on an n x n Grid

Grid A,JA U JU Total Ikita.

20 1,160 3,368 1,889 7,259 35,195

30 2,640 9,456 4,538 18,496 127,666

40 4,720 19,926 8,423 36,351 334,937

-12-

5. References

[1) A. Chang.

Application of sparse matrix methods in electric power system

analysis. In R. A. Willoughby, editor, Sparse Matrix Proceedings,

Report RAI, IBM Research, Yorktown Heights, New York. 1968,

(21 A. R. Curtis and J. K. Reid

Two FORTRAN Subroutines for Direct Solution of Linear Equations

Whose Matrix is Sparse, Symmetric, and Positive Definite. Harwell

Report AERE-R7119, 1972.

(3] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman.

Application of sparse matrix methods to partial differential

equations. Proceedings of AICA International Symposium on

Computer Methods for Partial Differential Equations, Bethlehem,

Pennsylvania 1975, pp. 40-45.

[4] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman.

Efficient implementation of sparse symmetric Gaussian elimination.

Proceedings of AICA International Symposium on Computer Methods

for Partial Differential Equations, Bethlehem, Pennsylvania 1975,

pp. 33-3 9.

[5] F. G. Gustavson.

Some basic techniques for solving sparse systems of linear

equations. In D. J. Rose and R. A. Willoughby, editors, Sparse

Matrices and Their Applications, Plenum Press, 1972, pp.41-52.

-13-

(61 John E. Key

Computer Programs for Solution of Large, Sparse, Unsymmetric Systems

of Linear Equations. International Journal for Numerical Methods

in Engineering, Volume 6: 497-509, 1973.

[7] W. C. Rheinboldt and C. K. Mesztenyi.

Programs for the solution of large sparse matrix problems based

on the arc-graph structure. University of Maryland Computer

Science Technical Report TR-262, 1973.

[8] D. J. Rose.

A graph-theoretic study of the numerical solutton of sparse

positive definite systems of linear equations. In R. Read,

editor, Graph Theory and Computing, Academic Press, 1972,

pp. 183-217.

(91 A. H. Sherman.

On the Efficient Solution of Sparse Systems of Linear and

Nonlinear Equations. Ph.D. dissertation, Department of Computer

Science, Yale University, 1975.

(10] A. H. Sherman.

Yale sparse matrix package user's guide. Lawrence Livermore

Laboratory Report UCID-30114, 1975.

Appendix I

Sparse Matrix Reordering Routines

C*** Subroutine ODRV
C*** Driver for sparse matrix reordering routines
C

SUBROUTINE ODRV
* (N, IA,JA,A, P,IP, NSP,ISP, PATH, FLAG)

C
C PARAMETERS
C Class abbreviations:
C v - supplies a VALUE to the driver
C r - contains a RESULT returned by the driver

C i - is used INTERNALly by the driver
C a - is an ARRAY
C n - is an INTEGER variable
C f - is a REAL variable.
C
C Class I Parameter
C -. -----
C I
C The nonzero entries of the .ktrix M are stored row by row
C in the array A. The array JA contains the corresponding column
C indices; i.e. if A(K) - M(I,J), then JA(K) = J. The array IA
C contains pointers to delimit the rows of M; IA(I) is the index
C in JA and A of the first entry stored in the Ith row of M. For
C example, the symmetric 5 by 5 matrix
C 1 0 2 3 0
C 0 4 0 0 0
C 2 0 5 6 0
C 3 0 6 7 8
C 0 0 0 8 9
C would be stored as
C 1 2 3 4 5 6 7 89
C ---------------
C IA 1 4 5 7 910
C JA 1 3 4 2 3 4 4 5 5
C A 1 2 3 4 5 6 7 8 9
C
C IA(I+1) - IA(I) is the number of nonzero entries in row I, so
C IA(N+1), where N is the number of rows in M, is needed to
C determine the length of the Nth row in A.
C If M is a symmetric matrix only the elements of the upper

C triangle (including the diagonal) need be stored in A, although
C the full matrix may be stored.
C
C vn N - the number of rows/columns in matrix M.
C vfa A - coefficient matrix for the system of linear equations
C Mx - b, stored in compressed form.
C Size - number of nonzeros in M (or only in upper
C triangle of M for symmetric matrix).
C vna IA - pointers to first elements of each row in A.
C Size - N+1.
C vna JA - the column numbers corresponding to elements of A.
C Size = size of A.

C
C A minimum degree ordering of the matrix is done (ORDER). If
C M is symmetric and only the upper triangle is being stored, the
C array A needs to be reordered.
C
C vn PATH - information on which subroutines are to be called.
C Values and meanings of PATH are:
C 1 perform minimum degree ordering only.
C 2 perform minimum degree ordering and
C reordering of symmetric matrix. This
C value should be passed only if M is
C symmetric and only the nonzeros of the
C upper triangle of M are being
C stored. If the nonzeros of the entire
C matrix are being stored, PATH should
C equal 1.
C rn FLAG - flag for error return from subroutines. Error values
C and their meanings are:
C 0 no error
C N+I null row in A -- I

C 9N+I ORDER storage exceeded on row I
C ON+l ISP too small to allocate space
C I 1N+1 PATH out of bounds
C
C The result of the ordering algorithm is a permutation of the
C row numbers of M and the inverse of the permutation. The order
C of the columns is the same as for the rows.
C
C rna [IP - inverse of the ordering of the rows/columns of M.
C I Size = N.
C rna I P - ordering of the rows/columns of M.
C I Size = N.
C
C Workspace is needed to hold the temporary vectors used in the
C ordering routine.
C
C rn NSP - dimensioned size of ISP. NSP must generally be at
C least 2*(number of pairs (1,J) such that M(IJ)
C or M(J,I) is nonzero) + N for the ordering routine
C and at least N + size of A for the symmetric
C reordering routine.
C fa ISP - storage space divided up for various arrays of
C the subroutines.
C

INTEGER IA(1), JA(l), P(1), IP(1), PATH, FLAG, VV, TP, Q
REAL A(1), ISP(1)

C
IF (PATH.LT.I .OR. PATH.GT.2) GO TO 111

C****** Allocate space for ordering subroutine **********************
MAX = NSP/2
VV = 1
LV = VV + MAX
IF (MAX.LT.N) GO TO 110

C****** Call minimum degree ordering routine ************************

FLAG - 0
CALL ORDER

(N, IA, JA, P, IP, MAX, ISP(VV), ISP(LV), FLAG)
IF (FLAG.NE.0) GO TO 100

C
C****** Allocate space, call symmetric reorder routine **************

IF (PATH.LT.2) GO TO I
T P = I
Q - TMP + N
IF (NSP+I-Q .LT. IA(N+I)-I) GO TO 110
CALL SRO

* (N, IP, [A, JA, A, ISP(TMP), ISP(Q))
I RETURN

C
C ** ERROR: Error Detected in ORDER

100 RETURN
C ** ERROR: Insufficient Storage
110 FLAG - t0*N + 1

RETURN
C ** ERROR: Illegal PATH Specified
ill FLAG - II*N + I

RETURN
END

C
C
C
C*** Subroutine ORDER
C*** Minimun degree orlering algorithm with threshhold search
C

SUBROUTINE ORDER
* (N, IA,JA, P,IP, MAX, VV,LV, FLAG)

C
C Input variables: N, IA,JA, MAX
C Output variables: i,IP, FLAG
C
C Parameters used internally:
C nia VV - value field of a linked list describing adjacencies of
C vertices.
C Size .ge. number of pairs (I,J) such that M(I,J) or
C M(J,I) is nonzero.

C nia LV - link field of the linked list.
C Size - size of VV.
C nv MAX - dimensioned size of VV and LV.
C

INTEGER IA(1), JA(1), P(1), IP(i), VV(1), LV(1), FLAG,
* 4DMIN, DTHR, S, SFS, TMP, VI, VJ, VK, VL

C
C * Initialize free storage **

VK=1
IF (MAX.LT.N) GO TO 109
DO I S-N,MAX

I LV(S) - S+l
LV(MAX) - 0
SFS = 1

C * Initialize ordering, degree, and adjacency ************************
DO 2 K=1,N

VK - P(K)

IP(VK) = K
VV(K) - N+I

2 LV(K) - K
SFS = SFS + N

C
C * Initialize nonzero structure *******************

C * For every vertex VK************************
C *** For every vertex VJ adjacent to VK ** ***

DO 8 VK-1,N
JMIN - IA(VK)

JMAX - IA(VK+1) - 1
IF (JMIN.GT.JMAX) GO TO 101
DO 7 J-JMIN,JMAX

VJ - JA(J)
IF (VJ.EQ.VK) GO TO 7

C ***** Search for VJ in adjacency of VK ~* *~

LLK - VK
3 LK LLK

LLK -LV(LK)
IF (VV(LLK) - VJ) 3, 7, 4

C ***** Insert VJ in adjacency of VK
4 VV(VK) -VV(VK) + 1

IF (SFS. EQ. 0) GO TO 109
LLK - SFS
SFS - LV(SFS)
VV(LLK) - VJ
LV(LLK) - LV(LK)
LV(LK) - LLK

C ***** Search for VK in adjacency of VJ **********i****

LU - VJ
5 ULJ L

LU = LV(LJ)
IF (VV(LLJ) - VK) 5, 7, 6

C ***** Insert VK in adjacency of VJ *****************

6 VV(VJ) = VV(VJ) + 1
IF (SFS.EQ.O) GO TO 109
LLJ - SFS
SFS - LV(SFS)
VV(LLJ) - VK
LV(LLJ) - LV(LJ)
LV(LJ) = LUJ

7 CONTINUE
8 CONTINUE

C
C * Minimum degree algorithm with threshhold search**********
C * Initialize vertex count and threshh',lds for search ********

JMIN - 1
DTHR - 0
DMIN - N+N

C *While uneliininated vertices exist

*** Search for vertex VI of minimum degree *************

9 JMIN - MAXO (JMIN, 1+1)

10 DMN MN DIVV(VI))

GO TO 9

C *** Number vertex VI of minimum degree *
it JMIN - J

I - 1+1
VJ - P(I)
P(J) = VJ
IP(VJ) - J
P(I) - VI
IP(VI) m I
NI - I

C *** Delete eliminated vertices from adjacency of VI *
C * For every vertex VK adjacent to VI *****************************

LLI - VI

lRAX - (VV(VI) - NI) - N

IF (KI.AX.LE.O) GO TO 14
DO 13 K-1,KMAX

12 LI = LLI
LLI = LV(LI)
VK = VV(LLI)

C ***** If VK eliminated, then delete from adjacency of VI *
IF (IP(VK).GT.I) GO TO 13
LV(LI) = LV(LLI)
LV(LLI) = SFS

SFS - LLI

LLI = LI

GO TO 12

13 CONTINUE
C Eliminate vertex VI **********************************
C *** For every vertex VK adjacent to VI *****************************

14 LLI -VI
KMAX = (VV(VI) - NI) - N

IF (KMAX.LE.0) GO TO 21
DO 20 K=1, KMAX

LI - LLI

LLI - LV(LI)

VK - VV(LLI)

C * Merge adjacency of VI into adjacency of VK *******************h

C * For every vertex VJ adjacent to VI *
LLK - VK

LJ = VI

JMAX - (VV(VI) - NI) - N

IF (JMAX.LE.O) GO TO 19
DO 18 Jf1,JMAX

L = LV(LJ)
VJ = VV(LJ)

IF (VJ.EQ.VK) GO TO 18

C ******* Search for VJ in adjacency of VK
15 LK - LLK

LLK - LV(LK)

VL = VV(LLK)
IF (VJ.LE.VL) GO TO 17

C ******* ... while deleting eliminated vertices *
IF (IP(VL).GT.I) GO TO 16

LV(LK) - LV(LLK)
LV(LLK) - SFS

SFS = LLK

LLK - LK

16 GO TO 15

C ******* Insert VJ in adjacency of VK ***,*
17 IF (VJ.EQ.VL) GO TO 18

VV(VK) - VV(VK) + I
IF (SFS. EQ.O) GO TO 109
LLK - SFS
SFS - LV(SFS)
VV(LLK) - VJ
LV(LLK) - LV(LK)
LV(LK) = LLK

18 CONTINUE
C ***** If VK of minimal degree, then number vertex VK,.

19 IF (VV(VK).GT.VV(VI)) GO TO 20
I = 1+1
J = IP(VK)
vi = P(1)
P(J) = Vi
IP(VJ) = J
P(I) - VK

IP(VK) - I
NI - NI + I

C .** . recover storage for adjacency of VK, ** ******

TMP - LV(VK)
LV(VK) = SFS
SFS - TNP

C *****... and delete VK from adjacency of VI ************************
LV(LI) = LV(LLI)
LV(LLI) = SFS
SFS = LLI
LLI = LI

20 CONTINUE
C *** Update degrees of uneliminated vertices adjacent to VI *
C * For every vertex VK in adjacency of VI *

21 LI - VI
KMAX = (VV(VI) - NI) - N
IF (KMAX.LE.0) GO TO 24
DO 23 K-1,KMAX

LI - LV(LI)
VK - VV(LI)

C ***** Update degree of VK and threshholds for cyclic search *********

VV(VK) - VV(VK) - NI
IF (VV(VK).GE.DMIN) GO TO 23

IF (VV(VK).GT.DTHR) GO TO 22
DMIN = DTHR
DTHR = VV(VK)
JMIN = MINO (JMIN, IP(VK))
GO TO 23

22 DMIN = VV(VK)
23 CONTINUE

C *** Recover storage for adjacency of VI *
24 TMP = LV(VI)

LV(VI) = SFS
SFS = TMP
IF (I.LT.N) GO TO 9

C
FLAG = 0
RETURN

C
C ** ERROR: Null row in A
101 FLAG - N + VK

RETURN

C ** ERROR: Insufficient Storage
109 FLAG - 9*N + VK

RETURN
END

C
C- --- ------ --

C
C*** Subroutine SRO
C*** Symmetric reordering of sparse symmetric matrix
C

SUBROUTINE SRO
* (N, IP, IA,JA,A, TMP, Q)

C
C Input variables: N, IP, IA,JA,A
C Output variables: IA,JA,A
C
C Parameters used internally:
C nia TMP - Initially, TMP(K) is set to the number of elements
C which will appear in the Kth row of M after
C reordering. Then TMP is initialized to IA and

C USED to set Q,
C Size = N.
C nia Q - Initially, Q(J) is set to the row in which A(J)

C (the element oF rtie old A) will appear after
C reordering. Then it is set to the index of A(J) in
C the reordered matrix.
C Size = number of nonzeros in the upper tri ,agle of M.
C
C The subroutine does not rearrange the order of the rows, but
C arranges each row so that the elements which will be above the
C diagonal after reordering are filled in. If M(I,J) is above the
C diagonal but is below the diagonal after reordering, then M(J,I)
C must be filled in, so some elements will appear on different rows
C after SRO is finished.
C

INTEGER IP(l), IA(1), JA(I), TMP(l), Q(1), QK
REAL A(l)

C
C ****** Initialize TMP ***

DO I I-l,N
I TMP(I)= 0

C ****** For each row of A **************************************
DO 3 I=1,N

JMIN = IA(I)
JMAX - IA(I+I) - I
IF (JMIN.GT.JMAX) GO TO 3

C ****** For each element of the row
DO 2 J=JMIN,JMAX

K = JA(J)
C * Adjust TMP, Q, and adjust JA if necessary *

IF (IP(K).LT.IP(1)) JA(J) - I
IF (IP(K).GE.IP(I)) K - I
Q(J) - K

2 TMP(K) = TMP(K) + I
3 CONTINUE

C
C **** Set new IA and copy it into ThP ~~***********

DO 4 1-1,N
IA(I+1) =IA(t) + TMP(L)

4 ThP(I) =IA(I)

C ****** QMJ gets position of A(J) after reordering ******
JMIN - IA~l)
JMAX - IA(N+I) - I
DO 5 J-JMIN,JMAX

K - Q(J)
Q(J) - TMP(K)

5 TNP(K) - TNP(K) + 1
C
C **** Reset JA and A **********************

DO 7 J=Jl4IN,JMAX
6 IF (Q(J).EQ.J) GO TO 7

K - Q(J)
Q(J) - Q(K)
Q(K) - K
JAK - JA(K)
JACK) - JA(J)
JA(J) - JAK
AK - A(K)
A(K) - A(J)
A(J) -AK
GO TO 6

7 CONTINUE
RETURN
END

Appendix 2

Subroutines for Solving Sparse Symmetric Positive
Definite Systems of Linear Equations

C*** Subroutine SDRV
C*** Driver for subroutines for solving sparse symmetric positive

C definite systems of linear equations
C

SUBROUTINE SDRV
* (N, P,IP, IA,JA,A, B, Z, NSP,ISP,RSP, PATH, FLAG)

C
C PARAMETERS
C Class abbreviations are:
C v - supplies a VALUE to the driver
C r - contains a RESULT returned by the driver
C i - is used INTERNALly by the driver
C a - is an ARRAY
C n - is an INTEGER variable

C f - is a REAL variable.
C
C Class I Parameter
C ...----- -

C I
C The nonzero entries of the matrix M are stored row by row
C in the array A. The array JA contains the corresponding column
C indices; i.e. if A(K) - M(I,J), then JA(K) = J. The array IA
C contains pointers to delimit the rows of M -- IA(I) is the index
C in JA and A of the first entry stored ili the Ith row of M.
C Only the nonzero entries on or above the diagonal need be stored.
C However, the subroutines will work if all nonzeros are stored.
C For example, the symmetric 5 by 5 matrix
C 1 0 2 3 0
C 0 4 0 0 0
C 2 0 5 6 0
C 3 0 6 7 8
C 0 0 0 8 9
C would be stored as
C 1 1 2 3 4 5 6 7 8 9
C ----- - - - - -- - - - - ---

C IA II 4 5 7 9 10
C JA I 3 4 2 3 4 4 5 5
C A 1 2 3 4 5 6 7 8 9
C
C IA(1+1) - IA(I) is the number of nonzero entries in row 1, so
C IA(N+1), where N is the number of rows in M, is needed to
C determine the length of the Nth row in A.
C
C vn N - the number of rows/columns in matrix M.
C vfa A - coefficient matrix for the system of linear equations

C Mx = b, stored in compressed form.
C Size - number of nonzeros in upper triangle of M
C (or the number of nonzeros in all of M).
C vna IA - pointers to the first element of each row in A.
C Size = N+1.
C vna JA - the column numbers corresponding to elements of A.
C Size - size of A.
C vna B - right-hand side for the equation Mx - b. B and Z

C cannot be the same vector.
C Size - N.

C rna Z - solution vector for the equation Mx - b. R and Z
C I cannot be the same vector.
C [Size - N.

C
C The solution of the system is done in three stages:
C SYMFAC - The matrix M is processed symbolically to determine

C where fillin will occur during factorization.
C NUMFAC - The matrix M is factored numerically into two
C triangular matrices.
C NUMSLV - The system resulting from NUMFAC is solved.
C For several systems with identical nonzero structures, SYmFAC
C need be done only once, then NUM*AC and NLSLV are done for each

C system. For several system with identical matrices M and
C different right-hand sides, SYMFAC and NUMFAC need be done only

C once, then NUMSLV is done for each right-hand side.
C
C vn PATH - information on which subroutines are to be called.

C Values and meanings of PATH are:

C I perform SYMFAC, NUMFAC and NUNSLV.
C 2 perform NUMFAC and NUMSLV. (SYMFAC is
C assumed to have been done in a manner
C compatible with the driver's storage
C allocation.)
C 3 perform NUMSLV only. (SYMFAC and NUMFAC
C are assumed to have been done.)
C rn FLAG - flag for error return from subroutines. Error values
C and their meanings are:
C 0 no error
C N+I row I of A is null
C 2N+I duplicate entry on row I of A
C 6N+I storage exceeded on row I in SYMFAC

C 7N+1 storage exceeded in NUMFAC
C 8N+I diagonal element-0 on row I in NUMFAC
C 10N+l ISP/RSP too small to allocate space
C IIN+l PATH out of bounds
C
C The rows and columns of the original matrix M can be
C arbitrarily reordered before calling the driver. If no reordering
C is done, then P(I) = IP(1) = I for 1-1,N. The answer vector Z
C is returned in the original order.
C
C vna P - the ordering of the rows (and columns) of M. P(l)

C is the number of the row of M which becomes the
C Ith row after reordering.
C Size = N.
C vna IP - the inverse of the ordering of the rows of M. That
C is, IP(P(I)) = I for 1-1,N.

C Size = N.
C
C Workspace is needed to hold the factored form of the matrix
C M plus various temporary vectors.
C
C na ISP - integer storage space divided up for various arrays
C of the subroutines. ISP and RSP should be the

C same array. This allows declaration of all real
C storage to be double precision.
C n NSP - dimensioned size of ISP and RSP. NSP generally
C must be at least 4N+l + 2*K (where K = (number of
C nonzeros in the upper triangle of M)), since ISP

C and RSP must hold:
C four vectors of fixed length;

C JU (with size = K + fillin - compression);
C 11 (with size - K + fillin).

C fa RSP - real storage space divided up for various arrays of

C the subroutines. ISP and RSP should be the same
C array. This allows declaration of all real storage
C to be double precision.
C

INTEGER P(1), IP(l), IA(I), JA(1), ISP(l), PATH, FLAG,
Q, D, U, ROW, TMP, UMAX

REAL A(1), B(l), Z(1), RSP(I)
C EQUIVALENCE (ISP(I), RSP(l))
C

IF (PATH.LT.1 .OR. PATH.GT.3) GO TO 111
C****** Initialize and divide up temporary sLorage ****

IJU = 1

IU - IJU + N

JL = IU + N+I
JU = JL + N
Q = NSP - N
JUMAX - Q - JU

IF (JUMAX.LT.O) GO TO 110
C
C****** Call subroutines *

FLAG = 0

IF (PATH.GT.1) GO TO I
CALL SSF

(N, P, IP, IA, JA, ISP(IJU), ISP(JU), ISP(IU), JUMAX,
RSP(Q), ISP(JL), FLAG)

IF(FLAG.NE.O) GO TO 100

C
I 3 =Q -N

U = JU + ISP(IJU+(N-1))

ROW - Q

UMAX = D - U
IF (PATH.GT.2) GO TO 2

CALL SNF
* (N, P, IP, IA, JA, A,
* RSP(D), ISP(IJU), ISP(JU), ISP(IU), RSP(U), UMAX,

* RSP(ROW), ISP(JL), FLAG)

IF (FLAG.NE.0) GO TO 100
C

2 TMP = Q
CALL SNS

(N, P, RSP(D), ISP(IJU), ISP(JU), ISP(IU), RSP(U), Z, B,
RSP(TMP))

RETURN
C
C ** ERROR: Error Detected in SSF, SNF, or SNS

100 RETURN
C ** ERROR: Insufficient Storage
110 FLAG = 10*N + 1

RETURN
C ** ERROR: Illegal PATH Specification

Ill FLAG = l1*N + I
RETURN
END

C
C--

C
C YALE SPARSE MATRIX PACKAGE - SYMMETRIC CODES
C SOLVING THE SYSTEM OF EQUATIONS Mx - b
C
C I. SUBROUTINE NAMES
C Subroutine names are of the form Sxx where:
C (1) the first letter is S for symmetric matrices;
C (2) the second letter is either S for symbolic or N for
C numerical processing;
C (3) the third letter is either F for factorization or S for
C solution.
C
C II. CALLING SEQUENCES
C The input matrix can be processed with an ordering subroutine
C before using the remaining subroutines. If this is done and only
C the upper triangle of M is being stored, SRO should be called to
C reorder the matrix into symmetric form before using the other
C subroutines. If an ordering subroutine is not used, set P(I) -

C IP(I) = I for I=1,N. Then the calling sequence is
C SSF (symbolic factorization)
C SNF (numerical factorization)
C SNS (called once for each right-hand side).

C
C III. STORAGE OF SPARSE MATRICES
C The nonzero entries of the matrix M are stored row by row
C in the array A. The array JA contains the corresponding column
C indices; i.e. if A(K) - M(I,J), then JA(K) = J. The array IA
C contains pointers to delimit the rows of M -- IA(I) is the index
C in JA and A of the first entry stored in the Ith row of M.
C Only the nonzero entries on or above the diagonal need be stored.
C However, the subroutines will work if all nonzeros are stored.
C For example, the symmetric 5 by 5 matrix

C 1 0 2 3 0
C 0 4 0 0 0
C 2 0 5 6 0
C 3 0 6 7 8
C 0 0 0 8 9
C would be stored as
C 1 2 3 4 5 6 7 8 9
C --- +- ----------
C IA I 4 5 7 9 10
C JAil 3 4 2 3 4 4 5 5
C All 2 3 4 5 6 7 8 9
C
C IA(I+1) - IA(1) is the number of nonzero entries in row I, so
C IA(N+I), where N is the number of rows in M, is needed to
C determine the length of the Nth row in A.
C The unit triangular matrix U is stored in a similar fashion
C using the arrays IU, JU, and U except that an additional vector
C IJU is used to compress storage of JU. IJU(K) points to the
C starting location in JU of entries for the Kth row. Compression
C occurs in two ways. First, if a row I was merged into the current
C row K, and the number of elements merged in from row I (some tail
C portion of row I) is the same as the final length of row K, then
C the Kth row and the tail are identical and IJU(K) can point to
C the start of the tail. Second, if some tail portion of the K-Ist
C row equals the head of the Kth row, then IJU(K) can point to the
C start of that tail section. For example, the nonzero structure of

C the matrix
C d0xxx
C Od0 xx
C OOdxO
C 000dx
C O000d
C might be stored, ignoring the diagonal, as
C 1 123456
C ---------------

C IU J146788
C JU 13454
C IJU 1 1243
C
C The diagonal entries of U are assumed to be equal to one
C and are not stored. The array D contains reciprocals of entries
C of the diagonal matrix in the U DU decomposition.
C
C IV. ADDITIONAL STORAGE SAVINGS
C In SSF and SNF, P and IP can be the same vector to the
C calling sequences if no reordering of the matrix has been done

C (i.e. P(I) - IP(1) - I for I-1,N).
C In SNS, B ard Z can be the same; however, the right-hand

C side B will be destroyed.
C
C V. PARAMETERS
C Following is a list of parameters to the programs. Names are

C uniform among the various subroutines. Class abbreviations are:
C v - supplies a VNLUE to the subroutine
C r - contains a RESULT returned by the subroutine
C i - is used INTERNALly by the subroutine
C a - is an ARRAY
C n - is an INTEGER variable
C f - is a REAL variable.
C
C Class I Parameter
C ---------- -

C fva A - coefficient matrix for the system of linear equations
C ft - b, stored in compressed form.

C Size = either the number of nonzeros in the upper
C triangle of M, or the number of nonzeros in
C all of M (see section III).
C fva B - right-hand side for the equation Mx = b.
C Size = N.
C fvra D - inverse of diagonal matrix in UtDU factorization
C (also used for temporary results in SNF).
C Size - N.
C nvra IA - pointers to first elements of each row in A.
C Size = N+1.
C nr FLAG - flag for error return from subroutines. Error values
C and their meanings are:
C 0 no error
C N+I row I of A is null

C 2N+I duplicate entry on row I of A
C 6N+I JU storage exceeded on row I
C 7N+I U storage exceeded

C 8N+I zero diagonal element on row I
C nvra IJU - pointers to the first elements of each row in JU,
C used to compress storage of JU.
C Size - N.
C nva IP - inverse of th1e ordering of the rows of M. For
C example, if row 1 is the 5th row after reordering,
C then IP(M)=5.

C Size - N.

C nvra IU - pointers to the first elements of each row in U.
C Size - N+I.
C nvra JA - column numbers corresponding to elements of A.
C Size = size of A.
C nvra JU - column numbers corresponding to elements of U.
C Size - size of U - compression.
C nv JUMAX - declared dimension of JU.
C nv N - number of rows/columns in matrix M.
C nva P - ordering of rows (and columns) of M. P(I) is
C the number of the row of M which becomes the Ith
C row after reordering.
C Size - N.
C fvra U - upper triangular matrix resulting from the
C factorization of M, stored in compressed form.
C Size = number of nonzeros in upper triangle of M
C plus fillin (IU(N+I)-l after SSF).
C nv UMAX - declared dimension of U.
C fra Z - solution vector for the equation Nx - b.
C Size - N.
C
C
C
C*** Subroutine SSF
C*** Symbolic Ut-D-U factorization of sparse symmetric matrix
C

SUBROUTINE SSF
* (N, P, IP, IA,JA, IJU,JU,IU, JUMtAX, Q, JL, FLAG)

C
C Input variables: N, P,IP, IA,JA, JUMAX
C Output variables: IJU,JU,IU, FIAG
C
C Parameters used Lnternally:
C nia JL - linked list of rows to be merged. IF the Kth row is
C being processed, JL(K) contains the number of the
C first row to be merged with the Kth row, JL(JL(K))
C is the number of the second row, etc.
C Size - N.
C nia Q - Suppose M' is the result of reordering M. If
C processing of the Kth row of M' (hence the Kth row
C of U) is being done, Q(J) is initially nonzero if
C M'(K,J) is nonzero and above the diagonal. Since
C I values need not be stored, each entry points to the
C next nonzero and Q(K) points to the first. N+I
C indicates the last element. For example, if N-9 and
C the 5th row of M' is
C 0 xx0x00x0
C then 0 will initially be
C a a a a 8 a a 10 a (a - arbitrary).
C As the algorithm proceeds, other elements of Q are
C inserted in the list because of fillin.
C Size - N.
C
C Internal variables:
C JUMIN,JUPTR - are the indices in JU of the first and last
C elements in either the last or the current row.
C LMAX - length of longest row merged into Q.
C LUI - number of elements in a row to be merged into Q.
C LUK- number of elements in the current row (Q).

C
INTEGER P(l), IP(1), JA(G), JA(L), IJU(1), JU(1), IU(1),
* Q(1), JL(I), FIAG, VJ, QM

C

C****** Initialize **
JUMIN - I
JUPTR = 0
IU(M) - I
DO I K-1,N

I JL(K) = 0
C
C ****** For each row **

DO 15 K-1,N
C ****** Initialize Q to structure of Kth row above diagonal *******

LUK = 0
Q(K) - N+1
JMIN = IA(P(K))
JMAX - IA(P(K)+I) - 1
IF (JMIN.GT.JMAX) GO TO 101
DO 3 J-JMIN,JMAX

VJ - IP(JA(J))
IF (VJ.LE.K) GO TO 3

QM - K
2 M - QH

QM = Q(M)
IF (QM.LT.VJ) GO TO 2
IF (QM.EQ.VJ) GO TO 102

LUK = LUK+1
Q(M) = VJ
Q(VJ) = QM

3 CONTINUE
C
C ****** Compute fillin for Q by ***********************************

U4AX = 0
IJU(K) = JUPTR
I-K

C Linking through JL and *
4 I - JL(I)

IF (I.EQ.0) GO TO 8
LUI - IU(I+1) - (IU(I)+I)

JMIN IJU(I) + I
JMAX = IJU(I) + LUI
IF (LUI.LE.LMAX) GO TO 5

LMAX - LUI
IJU(K) - JMIN

5 11K - K

C ****** Merging each row with Q *

DO 7 J=JMIN,JMAX
VJ - JU(J)

6 M=QM
QM = Q(M)
IF (QM.LT.VJ) GO TO 6
IF ((pI.EQ.VJ) GO TO 7

LUK - LUK+l
Q(M) = VJ
Q(VJ) - QM
q- vJ

7 CONTINUE
GO TO 4

C
C ***** Check if row duplicates another. If not ******************

8 IF (LUK.EQ.LMAX) GO TO 14

C ****** see if tail of K-lst row matches head of Kth *
IF (JUMIN.GT.JUPTR) GO TO 12

I - Q(K)

DO 9 JMIN-JUMIN,JUPTR
IF (JU(JMIN)-I) 9, 10, 12

9 CONTINUE
GO TO 12

10 IJU(K) - JMIN
DO 11 J-JMIN,JUPTR

IF (JU(J).NE.I) GO TO 12
I - Q(I)
IF (I.GT.N) GO TO 14

11 CONTINUE
JUPTR - JMIN - 1

C
C ****** Set Kth row of U to Q *

12 JUMIN = JUPTR + 1

JUPTR - JUPTR + LUK
IF (JUPTR.GT.JUMAX) GO TO 106
I K
DO 13 J-JUMIN,JUPTR
1 ,- Q(I)

13 JU(J)- I
IJU(K) = JUMIN

C
C ****** If more than one element in row, adjust JL **********

14 IF (LUK.LE.1) GO TO 15

I = JU(IJU(K))
JL(K) = JL(I)
JL(I) = K

15 IU(K+1) - IU(K) + LUK
C

FLAG - 0
RETURN

C
C ** ERROR: Null Row in A

101 FLAG - N + P(K)
RETURN

C ** ERROR: Duplicate Entry in A

102 FLAG - 2*N + P(K)
RETURN

C ** ERROR: Insufficient Storage for JU

106 FLAG = 6*N + K
RETURN
END

C
C --- -

C
C*** Subroutine SNF
C***~ Numerical Ut-fl-U factorization of sparse symmetric positive
C definite matrix
C

SUBROUTINE SNE
* (N, P,IP, IA,JA,A, D, IJU,JU,IU,U,UMAX, IL, JL, FLAG)

C
C
C Input variables: N, P,IP, IA,JA,A, IJU,JIJ,IU
C Output variables: D,U, FLAG
C
C Parameters used internally:
C niva ID - If the Kth row of U is being Computed, D(l) through
C ID(K-1) contain reciprocals of the entries of the
C Idiagonal matrix D from the decomposition. The
C Iremainder of D is initialized to the structure of
C Ithe Kth row of M (after reordering) and is adjusted
C Ito become the Kth row of U.
C nia IIL - IL(I) points to the first element of the Ith row to be
C Iused in adjusting the current row.
C ISize =N.
C nia IJL - linked list of rows to be used in ad~jti~iing the current
C Irow. If the Kth row is being processed, JL(K)
C Icontains the number of the first row to be used with
C Ithe Kth row, JL(JL(K)) is the number of the second
C Irow, etc.
C ISize = N.
C

INTEGER P(1), IP(1), IA(l), JA(1), IJU(1), JU(1), IU(1),
* UMAX, IL(1). JL(1), FLAG, VK, VJ
DIMENSION A(1), D(1)9 UCI)

C
C ****** Initialize JL, check storage ***************

IF (IU(N+1)-l .GT. UMAX) GO TO 107
DO 1 K=l,N

1 JL (K)=O0
C
C ****** For each row ***********************

DO 10 K=1,N
C **** Initialize D on and above the diagonal **********

JMIN = IU(K)

JMAX - IU(K+l) - I
IF (JMIN.GT.JMAX) GO TO 3
M4U - IJU(K) - IU(K)
DO 2 J=J1MIN,JMAX

2 D(JU(MUsJ)) = 0
3 D(K) -O

VK - P(K)
JNIN - IACVK)
JMAX - IA(VK+l)-1
DO 4 J=JMIN,JMAX

VJ - IP(JACJ))
IF (K.LE.VJ) D(VJ) -A(J)

4 CONTINUE

C
C * For each element in lower triangle to be eliminated ***

DK - D(K)
NXTI - JL(K)

5 I - NXTI
IF (I.EQ.0) GO TO 8

C ****** Change D and adjust IL and JL ****************************
NXTI = JL(I)
UKIDI - - U(IL(I)) * D(I)
DK = DK + UKIDI * U(IL(I))
U(IL(I)) - UKIDI
JMIN = IL(I) + I
JMAX = IU(I+1) - I
IF (JMIN.GT.JMAX) GO TO 7
MU - IJU(I) - IU(I)
DO 6 J-JMIN,JMAX

6 D(JU(MU+J)) = D(JU(MU+J)) + UKIDI * U(J)
IL(I) - JMIN
J = JU(MU+JMIN)
JL(I) = JL(J)
JL(J) = I

7 GO TO 5
C
C ****** Set D(K) and copy rest of D into Kth row of U *

8 IF (DK. EQ. 0) GO TO 108
D(K) = 1 / DK
JMIN = IU(K)
JMAX = IU(K+I) - I
IF (JMIN.GT.JMAX) GO TO 10
MU = IJU(K) - JMIN
DO 9 J=JMIN JMAX

9 U(J) = D(JU(MU+J))
IL(K) = JMIN
I = JU(MU+JMIN)
JL(K) = JL(I)
JL(I) = K

10 CONTINUE
C

FLAG = 0
RETURN

C
C ** ERROR: Insufficient Storage for U
107 FLAG - 7*N + 1

RETURN
C ** ERROR: Zero Pivot
108 FLAG - 8*N + K

RETURN
END

C
C --- - - -- - - - --- - - - - - - - - - - - - - - - ---- -

C
C*** Subroutine SNS
C*** Numerical solution of sparse symmetric positive definite system of
C linear equations given Ut-D-U factorization
C

SUBROUTINE SNS
* (N, P, D, IJU,JU,IU,U, Z, B, TMP)

C
C Input variables: N, P, D, IJU,JU,U, B
C Output variables: Z
C
C Parameters used internally:
C fia I TMP - vector which gets result of solving Ut Dy = b.
C I Size - N.
C

INTEGER P(I), IJU(1), JU(1), IU(1)
REAL D(1), U(1), Z(1), B(1), TMP(1)

C
C ****** Initialize TMP to the reordered B *************************

DO I K=I,N
1 TMP(K) = B(P(K))

C****** Solve Ut Dy f b by forward substitution *****************

DO 3 K=I,N
TMPK = TMP(K)
JMIN = IU(K)

JMAX = I J(K+1) - I
IF (J4IN.GT.JMAX) GO TO 3
MU = IJU(K) - JMIN
DO 2 J=JMIN,JMAX

2 TMP(JU(MU+J)) = TMP(JU(MU+J)) + U(J) * TMPK
3 TMP(K) = TMPK * D(K)

C
C ****** Solve Ux = y by back substitution ***********************

K =N
DO 6 l1,N

SUM = TMP(K)
JMIN = IU(K)
JMAX = IU(K+1) - 1
IF (JMIN.GT.JMAX) GO TO 5

MU = IJU(K) - JMIN
DO 4 J=JMIN,JMAX

4 SUM - SUM + U(J) * TMP(JU(MU+J))
5 TMP(K) = SUM

Z(P(K)) = SUM
6 Kf-K-I

RETURN
END

Appendix 3

Test Driver for Sparse Symmetric Matrix PackaRe

C*** Program STST
C*** Test Driver for Symmetric Codes in Yale Sparse Matrix Package
C
C Variables:
C
C NG - size of grid used to generate test problem.
C
C N - number of variables and equations (- NG x NG).
C
C IA - INTEGER one-dimensional array used to store row pointers
C to JA and A; DIMENSION = N+l.
C
C JA - INTEGER one-dimensional array used to store column
C indices of nonzero elements of (upper triangle of) M;
C DIMENSION - number of nonzero entrLes tt (ipper triangle
C of) M.
C
C A - REAL one-dimensional array used to store nonzero elements
C of (upper triangle of) M; DIMENSION = number of nonzero
C entries in (upper triangle of) M.

C
C X - REAL one-dimensional array used to store solution x;
C DIMENSION = N.
C
C B - REAL one-dimensional array used to store right-hand-side b
C DIMENSION = N.
C
C P - INTEGER one-dimensional array used to store permutation oF
C rows and columns for reordering linear system;
C DIMENSION = N.
C
C IP - INTEGER one-dimensional array used to store inverse of
C permutation stored in P; DIMENSION - N.
C
C NSP - declared dimension of one-dimensional arrays ISP and RSP.
C
C ISP - INTEGER one-dimensional array used as working storage
C (equivalenced to RSP); DIMENSION = NSP.
C
C RSP - REAL one-dimensional array used as working storage
C (equivalenced to ISP); DIMENSION - NSP.

6C
C

INTEGER IA(1OO), JA(500), P(1O0), IP(100), ISP(1500),

CASE, PATH, FLAG, APTR,VP,VQ, X,XMIN,XMAX, Y,YMIN,YMAX
REAL A(500), Z(100), B(1O0), RSP(1500)
EQUIVALENCE (ISP(1), RSP(1))

DATA NSP/1500/, EPS/IE-5/

C
INDEK(I,J) = NG*I + J - NG

C
NG= 3
N - NG*NG

C****** For CASE-I we store the entire matrix, for CASE-2 we store

C****** only the upper triangular part
DO 5 CASE-I,2

C
C****** Set up matrix for five point finite difference operator *

APTR = I
DO 2 I-1,NG

DO 2 J=l,NG
VP - INDEX (I, J)

P(VP) - VP
IP(VP) - VP
IA(VP) = APTR
SUM= 0

Xt1IN = MAX0 (1, I-1)
XMA = MINO (NG, 1 1)

YMIN = MAXO (1, J-1)
YMAX = MINO (NG, J+l)
DO I X=KMIN,XMAX

DO 1 Y=YMIN,YMAX
IF ((X-I) * (Y-J) .NE. 0) GO TO 1
VQ = INDEX0(, Y)
JA(APTR) = VQ
A(APTR) = 4
IF (VP .NE. VQ) A(APTR) =-1

SUM = SUM + A(APTR) * VO
C****** If CASE=2, do not store elements below diagonal **************

IF(VP.GT.VQ .AND. CASE.EQ.2) GO TO I
APTR = APTR + I

I CONTINUE
B(VP) = SUM

2 CONTINUE
IA(N+I) = APTR
NZA = IA(N+I) - I

C
C****** Output original array A ********

IF (CASE.EQ.1) PRINT 1001, NG,NG

1001 FORMAT (/" *** FIVE-POINT OPERATOR ON ', II, ' BY ' II, ' GRID
• I " (ALL ENTRIES OF MATRIX STORED) ')

IF (CASE.EQ.2) PRINT 1002, NG,NG
1002 FORMAT (/" *** FIVE-POINT OPERATOR ON ', ii, - BY II, GRID

• / " (ONLY ENTRIES OF UPPER 1RIAIGLE STORED) ')

PRINT 1003, (IA(I),I=1,N), IA(N+1)
1003 FORMAT (/" COEFFICIENT MATRIX: "/

* /" IA (INDICES OF FIRST ELEMENTS IN ROWS)'
• I(1015))

PRINT 1004, (I,JA(I),A(I), I=1,NZA)
1004 FORMAT (/" JA A

* /" I COLUMN INDICES MATRIX'
• /(13, 110, F16.5))

PRINT 1005, (B(I), 1=1,N)
1005 FORMAT (/' RIGHT HAND SIDE B: "

• /(5FI0.5))

C
C * Call ODRV *

FLAG - 0
PATH = CASE
CALL ODRV

* (N, IA,JA,A, P,IP, NqP,RSP, PATH, FLAG)
IF (FLAG.NE.0) GO TO 101

C
C****** Outpitt reordered array A *

PRINT 1006, (I,P(I),IP(I), I-1,4)

1006 FORMAT ('ROW/COLUMN ORDERING FRoM OI)RV: '
* I-P IP

* IP I ROW/COL ORDERING INVERSE ORDERING
* 1(/M. 110, 120))
IF (CASE.EQ.2) PRINT 1007, (IA(I), 1-1,N), IA(N+1)

1007 FORMAT (/P REORDERED COEFFICIENT MATRIX: '/
* / IA (INDICES OF FIRS'T ELEMENTS IN ROWS)
* /(1015))
IF (CASE.EQ.2) PRINTI 1008, (I,JA(I),A(I), I-1,NZA)

1008 FORMAT (/- JA A
V I COLUMN INDICES MATRIX

*(13, 110, F16.5))
C
C *** Call SDRV **************************

PATH -
CALL SDRV
* (N, P,IP, IA,JA,A, B, Z, NSP,ISP,RSP, PATH, FLAG)
IF (FLAG.NE.O) GO TO 102

C
C Calculate error * * * * * * * * * * *

SUM = 0
DO 4 1-1,N

4 SUM - SUIM + ((Z(I)-I)/I)**2
RMS - SQRT(SUM/N)

C
C****** Output Solution and error measure

PRINT 1009, (Z(I),I=1,N)
1009 FORMAT (1' SOLUTION FROM SDRV -

* /(5F10.5))
IF (RMS.LE.EPS) P'RINT 1010, RMS

1010 FORMAT (/' SOLUTION CORRECT: R.7S KRROR' = , PE8.2)
IF (RMS.GT.EPS) PRINT 1011, RMS

1011 FORMAT (/- SOLUTION INCORRECT: RMS ERROR = , PE8.2)
C

5 CONTINUE
STOP

C
C****** Error messages ***********************

101 PRINT 1012, FLAG
1012 FORMAT (/P ERROR IN OflRV: PfkG = ,15)

STOP
C

102 PRINT 1013, FLAG
1013 FORMAT (PERRIN SDRV: FLAG = ,15)

STOP
END

ILL.------ -....

Appendix 4

Sample Oitput From Test Driver

* FIVE-POINT OPERATOR ON 3 BY 3 GRID

(ALL ENTRIES OF MATRIX STORED)

COEFFICIENT MATRIX:

IA (INDICES OF FIRST ELEMENTS IN ROWS)
1 4 8 11 15 20 24 27 31 34

JA A
I COLUMN INDICES MATRIX
1 1 4.00000
2 2 -1.00000
3 4 -1.00000
4 1 -1.00000
5 2 4.00000
6 3 -1.00000
7 5 -1.00000

8 2 -1.00000
9 3 4.00000
10 6 -1.00000
11 1 -1.00000
12 4 4.00000
13 5 -1.00000
14 7 -1.00000
15 2 -1.00000
16 4 -1.00000
17 5 4.00000
18 6 -1.00000
19 8 -1.00000
20 3 -1.00000
21 5 -1.00000
22 6 4.00000
23 9 -1.00000
24 4 -1.00000
25 7 4.00000
S8 -1.00000

27 5 -1.00000
28 7 -1.00000
29 8 4.00000
30 9 -1.00000
31 6 -1.00000
32 8 -1.00000
33 9 4.00000

RIGHT HAND SIDE B:
-2.00000 -1.00000 4.00000 3.00000 0.00000
7.00000 16.00000 11.00000 22.00000

ROW/COLUMN ORDERING FROM ODRV:

P IP

I ROW/COL ORDERING INVERSE ORDERING

2 3 7
3 7 2
4 9 8
5 6 6

6 5 5
7 2 3
8 4 9
9 8 4

SOLUTION FROM SDRV:
1.00000 2.00000 3.00000 4.00000 5.00000

6.00000 7.00000 8.00000 9.00000

SOLUTION CORRECT: RMS ERROR 1 l.39E-08

*** FIVE-POINT OPERATOR ON 3 BY 3 GRID
(ONLY ENTRIES OF UPPER TRIANGLE STORED)

COEFFICIENT MATRIX:

IA (INDICES OF FIRST ELEMENrS IN ROWS)

1 4 7 9 12 15 17 19 21 22

JA A
I COLUMN INDICES MATRIX
1 1 4.00000
2 2 -1.00000

3 4 -1.00000
4 2 4.00000
5 3 -1.00000

6 5 -1.00000
7 3 4.00000
8 6 -1.00000
9 4 4.00000
10 5 -1.00000
11 7 -1.00000

12 5 4.00000
13 6 -1.00000
14 8 -1.00000
15 6 4.00000
16 9 -1.00000

17 7 4.00000

18 8 -1.00000
19 8 4.00000
20 9 -1.00000
21 9 4.00000

RIGHT HAND SIDE B:
-2.00000 -1.00000 4.00000 3.00000 0.00000
7.00000 16.00000 11.00000 22.00000

ROW/COLUMN ORDERING FROM ODRV:

p IP
I ROW/COL ORDERING INVERSE ORDERING
1 1 1
2 3 7

3. 7 2
4 9 8
5 6 6
6 5 5

7 2 3

8 4 9
9 8 4

REORDERED COEFFICIENT MATRIX:

IA (INDICES OF FIRST ELEMENTS IN ROWS)

1 4 5 8 9 13 15 18 19 22

JA A

I COLUMN INDICES MATRIX
1 1 4.00000
2 2 -1.00000
3 4 -1.00000
4 2 4.00000
5 2 -1.00000
6 3 4.00000
7 6 -1.00000

8 4 4.00000
9 2 -1.00000

10 4 -1.00000
11 5 4.00000
12 8 -1.00000
13 5 -1.00000
14 6 4.00000

15 4 -1.00000
16 7 4.00000

17 8 -1.00000
18 8 4.00000
19 6 -1.00000
20 8 -1.00000
21 9 4.00000

SOLUTION FROM SDRV:
1.00000 2.00000 3.00000 4.00000 5.00000
6.00000 7.00000 8.00000 9.00000

SOLUTION CORRECT: RMS ERROR = 1.39E-08

